+91 97731 34699 [email protected]

Chemical Structure

PLA

 

Poly(D,L-Lactide)

CAS Number26680 10 4
Systematic Name:Propanoic acid, 2-hydroxy-, homopolymer, PDLLA
Molecular Formula:(C3H6O3)x
EPA Registry Name:Polylactic acid
Former CAS Number(s)1104201-86-6, 31587-11-8, 1148011-07-7, 947236-64-8, 1384255-85-9
Substance Type:DL-PLA | DL 100-2A | Inherent Viscosity : 0.15 – 0.30 dL/g | Acid terminated  |L- Lactide : D-Lactide 50:50 | Mw 10-25 kDa Biodegradable Polymer, Excipient, Non-Active pharmaceutical ingredient, Nanoparticles.
Synonym: PLA, Poly(D,L-lactide) acid terminated, Poly(DL-lactide), acid terminated, PDLLA

Qualitative Analysis

AppearanceWhite to tan colored solid powder
Inherent viscosity (IV)0.15 – 0.30 dL/g, in chloroform(25 °C)
L-Lactide 50% ( ± 2%)
D-Lactide50% ( ± 2%)

Quantitative Analysis

Assay≥ 98 %
Residual monomer≤ 0.2 %
Residual solventComplies
Heavy metalComplies

Application

Poly(D, L-lactide)- DL 100-2A (DL-PLA) has been one of the most attractive Biodegradable and biocompatible polymers used to fabricate devices for diagnostics and other applications of clinical and basic science research, including vaccine, cancer, cardiovascular disease, and tissue engineering. In addition, DL-PLA and its copolymers are Essential in designing nanoparticles with desired characteristics such as biocompatibility, biodegradation, particle size, surface properties, drug release, and targetability and exhibit a wide range of erosion times. DL-PLA has been approved by the US FDA for use in drug delivery complex formulation and biodegradable orthopedic Medical implants.

 

Reference :

[1] Chen G, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromol Biosci 2002;2:67–77.
[2] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32:762–798.
[3] Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Polymers concepts in tissue engineering. J Biomed Mater Res
1998;43:422–427.
[4] Cheng Y, Deng S, Chen P, Ruan R. Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China
2009;4:259–264.
[5] Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview. Prog Polym Sci 2007;34:455–482.

[6] Lorenz W. Walter Lorenz Surgical Inc. Available at www.lorenzsurgical.com. Accessed: April 2010.
[7] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci 2004;4:835–864
[8] Lovald ST. Mechanical design optimization of bioabsorbable fixation devices for boné fractures. J Craniofacial Surg
2009;20:389–398.
[9] Waris E, Konttinen YT, Ashammakhi N, Suuronen R, Santavirta S. Bioabsorbable fixation devices in trauma and bone
surgery: current clinical standing. Exp Rev Med Devices 2004;1:229–240.
[10] Lee SY, Valtchev P, Dehghani F. Synthesis and purification of poly(L-lactic acid) using a one-step benign process. Green
Chem 2012;14:1357–1366
[11] Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Biores
Technol 2010;101:8493–8501.
[12] Vickroy, T.B., Lactic acid. In: Moo-Young, (Ed.), Comprehensive Biotechnol. Pub: DicToronto: Pergamon Press, 1985,
761–776.
[13] John RP, Anisha GS, Nampoothiri KM, Pandey A. Direct lactic acid fermentation: focus on simultaneous saccharification
and lactic acid production. Biotech Adv 2009;27:145–152.
[14] Adsul MG, Varma AJ, Gokhale DV. Lactic acid production from waste sugarcane bagasse-derived cellulose. Green Chem
2007;9:58–62.
[15] John RP, Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass: an overview on process
developments and future perspectives. Appl Microbiol Biotech 2007;74:524–534.
[16] Philp A, Macdonald AL, Watt PW. Lactate – a signal coordinating cell and systemic function. J Exp Biol, 2005; 208, 4561-
4575.
[17] Lampe KJ, Namba RM, Silverman TR, Bjugstad KB, Mahoney MJ. Impact of lactic acid on cell proliferation and free
radical-induced cell death in monolayer cultures of neural precursor cells. Biotech Bioeng 2009;103:1214–1223.
[18] Axelsson L. Lactic acid bacteria: classification and physiology. In: Lactic acid bacteria: microbiological and functional
aspects. New York: Marcel Dekker Inc.; 2004.
[19] Lunelli BH, Andrade RR, Atala DIP, Wolf Maciel MR, Maugeri Filho F, Maciel Filho R. Production of lactic acid from
sucrose: strain selection, fermentation, and kinetic modeling. Appl Biochem Biotechnol 2010;161:227–237.
[20] Rojan PJ, Nampoothiri KM, Nair AS, Pandey A. L-Lactic acid production using Lactobacillus casei in solid-state
fermentation. Biotech Lett 2005;27:1685–1688.
[21] FAO Statistics Division. Available at: http://www.faostat.fao.org. Accessed: April 2010.
[22] Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater 2000;12:1841–1846.
[23] Södergard A, Stolt M. Properties of lactic acid-based polymers and their correlation with composition. Pro Polym Sci
2002;27:1123–1163.
[24] Bouapao L, Tsuji H, Tashiro K, Zhang J, Hanesaka M. Crystallization, spherulite growth, and structure of blends of
crystalline and amorphous poly(lactide)s. Polymer 2009;50:4007–4017.
[25] Griffith LG. Polymeric biomaterials. Acta Mater 2000;48:263–77. FAO Statistics Division. Available at:
http://www.faostat.fao.org. Accessed: April 2010.
[26] Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci 2008;33:820–852.
[27] Fukushima K, Kimura Y. An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic
acid)s with high molecular weight. J Polym Sci Part A: Polym Chem 2008;46:3714–3722.
[28] Garlotta D. A literature review of poly(lactic acid). J Polym Environ 2001;9:63–84.
[29] Auras R, Lim LT, Selke SEM, Tsuji H. Poly(lactic acid): synthesis, structures, properties, processing, and application. New
Jersey: Jhon Wiley & Sons, Inc; 2010.
[30] Kim E, Shin EW, Yoo IK, Chung JS. Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening
polymerization of lactide to produce polylactide. J Mol Catal A: Chem 2009;298:36–39.
[31] Witzke DR, Narayan R, Kolstad JJ. Reversible kinetics and thermodynamics of the homopolymerization of L-lactide with
2-ethyl hexanoic acid tin(II) salt. Macromol 1997;30:7075–7085.

[32] Achmad F, Yamane K, Quan S, Kokugan T. Synthesis of polylactic acid by direct polycondensation under vacuum without
catalysts, solvents, and initiators. Chem Eng J 2009;151:342–350.
[33] Mehta R, Kumar V, Bhunia H, Upadhyay S. Synthesis of poly(lactic acid): a review. Polym Rev 2005;45:325–349.
[34] Chanfreau S, Mena M, Porras-Dominguez JR, Ramírez-Gilly M, Gimeno M, Roquero P, Tecante A, Bárzana E. Enzymatic
synthesis of poly-L-lactide and poly-L-lactide-co-glycolide in na ionic liquid. Bioprocess Biosyst Eng 2010;33:629–638.
[35] Kim KW, Woo SI. Synthesis of high-molecular-weight poly(L-lactic acid) by direct polycondensation. Macromol Chem
Phys 2002;203:2245–2250.
[36] Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly(D, L -lactic acid)/poly(Įcaprolactone) blends. Biomater 2003;24:4181–4190.
[37] Malmgren T, Mays J, Pyda M. Characterization of poly(lactic acid) by size exclusion chromatography, differential
refractometry, light scattering, and thermal analysis. J Therm Anal Calorim 2006;83:35–40.
[38] Henton DE, Gruber P, Lunt J, Randall J. Polylactic acid technology. In: Mohanty AK, editor. Natural Fibers, Biopolymers
, and Biocomposites. CRC Press; 2005. p. 528–569.
[39] Yamane H, Sasai K. Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactic). Polymer
2003;44:2569–2575.
[40] Oyama HT, Tanaka Y, Kadosaka A. Rapid controlled hydrolytic degradation of poly(l-lactic acid) by blending with
poly(aspartic acid-co-l-lactide). Polym Degrad Stab 2009;94:1419–1426.
[41] Tsuji H, Ishida T. Poly(L-lactide).X. Enhanced surface hydrophilicity and chain scission mechanism of poly(L-lactide) film
in enzymatic, alkaline, and phosphate-buffered solutions. J Appl Polym Sci 2003;87:1628–1633.
[42] Bergsma JE, De Bruijn WC, Rozema FR, Bos RRM and Boering G. Late degradation tissue response to poly(l-lactide)
bone plates and screws. Biomat 1995;16:25–31.
[43] Mainil-Varlet P, Curtis R and Gogolewski S. Effect of in vivo and in vitro degradation on molecular and mechanical
properties of various low-molecular-weight polylactides. J Biomed Mater Res 1997;36:360–380.
[44] Wada R, Hyon SH, Ikada Y, Nakao Y, Yoshikawa H and Muranishi S. Lactic Acid Oligomer Microspheres Containing an
Anticancer Agent for Selective Lymphatic Delivery: I. In Vitro Studies. J Bioact Compat Polym 1988;3:126–136.
[45] Wichert B and Rohdewald P. Low molecular weight PLA: a suitable polymer for pulmonary administered microparticles,
J. Microencapsulation 1993;10:195–207.
[46]A ndreopoulos AG, Hatzi EC, and Doxastakis M. Controlled release systems based on poly(lactic acid). An in vitro and in
vivo study. J Mater Sci Mater Med 2000;11:393–397.
[47] Jabbari E, He X. Synthesis and characterization of bioresorbable in situ cross-linkable ultra-low molecular weight
poly(lactide) macromer. J Mater Sci Mater Med 2008;19:311–318.
[48] Benicewicz BC, Hopper PK. Review: Polymers for absorbable surgical sutures – part II. J Bioact Compat Polym
1991;1:64–94.
[49] Davis SS, Illum L, Stolnik S. Polymers in drug delivery. Curr Opin Colloid Interf Sci 1996;1:660–666
[50] Durselen L, Dauner M, Hierlemann H, Planck H, Claes LE, Ignatius A. Resorbable polymer fibers for ligament
augmentation. J Biomed Mater Res 2001;58:666–672.
[51]Coutu DL, Yousefi AM, Galipeau J. Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. J Cell Biochem 2009;108:537–546.
[52] Kellomaki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, TormaLa P. Bioabsorbable scaffolds for guided bone
regeneration and degeneration. Biomater 2000;21:2495–2505.
[53] Papenburg BJ, Liu J, Higuera G, Barradas AMC, Boer J, Blitterswijk VCA. Development and analysis of multi-layer
scaffolds for tissue engineering. Biomater 2009;30:6228–6239.
[54] Vainionpaa S, Rokkanen P, Tormala P. Surgical applications of biodegradable polymers in human tissues. Progr Polym Sci
1989;14:679–716.
[55] Bos RR, Boering G, Rozema FR, Leenlag JW. Resorbable poly(L-lactide) plates and screws for fixation of zygomatic
fractures. J Oral Maxillofac Surg 1987;45:751–753.
[56] Rokkanen P. Absorbable materials in orthopedic surgery. Ann Med 1991;23:109–115.

AA, Sadove AM. Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883
patients. Plast Reconstr Surg 2004;114:850–856.
[58] Imola MJ, Schramm VL. Resorbable internal fixation in pediatric cranial base surgery. Laryngoscope 2009;112:1897–1901.
[59] Sanders JE, Bale SD, Neumann T. Tissue response to microfibers of different polymers: Polyester, polyethylene, polylactic
acid, and polyurethane. J Biomed Mater Res 2002;62:222–227.

 

Inquire Now

  • This field is for validation purposes and should be left unchanged.